Frame Translation¶
\(\text{transform}(\text{current\_camera\_frame}, \text{return\_all\_frames}=\text{False})\)
Transformation Matrix definition:¶
- \(T_{\text{c}}^{\text{ros}}\) — Transformation matrix from the camera frame to the ROS frame. (A constant)
- \(T_{\text{E}}^{\text{c}_k}\) — Transformation matrix of the current camera frame.
- \(T_{\text{E}}^{\text{c}_0}\) = Transformation matrix of the initial camera frame with respect to the Earth frame.
Transformation Calculations:¶
- \(T_{\text{c}_k}^{\text{c}_0} = T^{\text{E}}_{\text{c}_0} \cdot T_{\text{E}}^{\text{c}_k}\) — Transformation matrix from the initial frame to the current camera frame.
- \(T^{\text{c}_k}_{\text{ros}_0} = T^{\text{c}}_{\text{ros}} \cdot T^{\text{c}_k}_{\text{c}_0}\) — Combined transformation matrix from the ROS frame to the current camera frame.
- \(T^{\text{ros}_k}_{\text{ros}_0} = T^{\text{c}_k}_{\text{ros}_0} \cdot T_{\text{c}}^{\text{ros}}\) — Final transformation matrix from the ROS frame to the transformed current frame.